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Motivation • Discrete Symmetry

Identity 1 Rotation Reflection

Rotation
w/out Reflection

Reflection  
w/out Rotation Translation

𝝅
𝟑

𝝅
𝟐
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Motivation • Reflections

2

1 after flipping along 1 

=

after flipping along 2 
𝟐𝝅
𝟑

All above operations are generated by reflections. 

e.g.

+
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Motivation • Reflections
All above operations are generated by reflections. 

e.g.

1 2

+

flip along 1 flip along 2 

translation!
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Motivation • Reflections

Theorem (Cartan-Dieudonné)    For a vector space     of dimension 
with a nondegenerate symmetric bilinear form, any orthogonal transformation is a 
composition of at most      hyperplane reflections. 

𝑉 𝑛

𝑛
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Motivation • Geometry         Algebra

Hyperplane Reflection 

defined by 
reflection operation 

also called an
affine reflection

good ole 
Euclidean inner 
product for now

co-dimension 
1 surfaces
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• Root Vector = 𝑟 defines hyperplane normal
• �⃑� is any Euclidean vector



Motivation • Reflection Groups

more aptly … 
Coxeter Groups

Donald Coxeter
& the spherical tiling (5, 3, 2) Classification of 

Irreducible Euclidean Coxeter Groups

Lattices Polytopes
higher dimensional analogs
of polygons and polyhedra

Semi-simple finite
Lie algebras
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Euclidean • Crystallographic Symmetry
Lattice

Symmetry operation     s.t.

A group      generated by reflections is crystallographic if it stabilizes 
some lattice      , i.e.               for all  

𝑔 𝑔Λ = Λ
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integer linear combinations of     linear independent 
basis vectors in     dimensional Euclidean space.

𝑛
𝑛

Γ
Λ 𝛾Λ = Λ 𝛾 ∈ Γ . 



Euclidean • Lattice Symmetries

Full symmetry group

Translational symmetries
(no fixed points)

Point Symmetries through origin
(symmetries w/ fixed points)

Describe using parallel 
reflections.

Describe using reflections 
through origin.
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Euclidean • Lattice Symmetries
What are reflection symmetries of lattice
through the origin?

• Root vector must be a lattice vector.

• Take root vector to be primitive – minimal length.

10



Euclidean • Lattice Symmetries

Theorem    For a lattice     , if     is a primitive root vector of 
then its norm           divides

�⃑�Λ
�⃑�, �⃑� 2 Λ
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Euclidean • Lattice Symmetries

Theorem For a lattice     , if     is a primitive root vector of 
then its norm           divides

So now we can generate all point symmetries (about origin) of lattice!

If we also include parallel planes with same roots passing through non-origin points …

… also generate translations!

=   full lattice symmetry group

�⃑�Λ
�⃑�, �⃑� 2 Λ
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Euclidean • Geometry         Algebra

Hyperplane Reflection 

Kaleidoscope!
Collection of mirrors

All reflection symmetries
of a lattice.
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Euclidean • Hexagonal Lattice determinant = 3
so look for norm 

1, 2, 3, 6 primitive roots 

“origin”

Lattice Point Reflections / Point Group 14



Euclidean • Hexagonal Lattice add in affine mirrors

Point Group Kaleidoscope / Kaleidoscope Group15



Euclidean • Hexagonal Lattice full space now tiled by triangles 
(equivalent upon kaleidoscope 

reflection)

Kaleidoscope Fundamental Domain(s) 16



Euclidean • Hexagonal Lattice image of point at the        
angle of fundamental 

domain reflected by all 
kaleidoscope mirrors 

Fundamental Domain(s) Original Lattice Regenerated!

𝝅
𝟔
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Euclidean • Fundamental Domain

The fundamental domain defined by a group     acting on a space    
is the orbifold (aka orbit-space manifold) defined by 

Above,     is a kaleidoscope group and     is Euclidean space. 

is the highlighted 30-60-90 triangle i.e. 

𝑉

Γ
𝑉/Γ

Γ

𝑉/Γ

𝑉
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Euclidean • Fundamental Domain

The fundamental domain defined by a group     acting on a space    
is the orbifold (aka orbit-space manifold) defined by 

Above,     is a kaleidoscope group and     is Euclidean space. 

is the highlighted 30-60-90 triangle i.e.

Ok … why is this important?

𝑉

Γ
𝑉/Γ

Γ

𝑉/Γ

𝑉
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Fundamental Domains

Understanding fundamental domains             Classification of irreducible finite 
Coxeter groups  
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Non-Euclidean • Brief Note on Spherical
Geometry

Can embed sphere in       dimension Euclidean space

Hyperplane Mirrors / Reflection in        induce hyperplane mirrors / reflections in   

𝑛 − 1 𝑛

spherical 
triangles! 
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Kaleidoscopic Symmetry!

Important concepts underlying above discussion.

A group     is crystallographic if it stabilizes some lattice    , i.e.               for all  

A group     is kaleidoscopic in some space
if it has finite and non-zero volume orbifold          i.e. fundamental domain.  

Γ Λ 𝛾Λ = Λ
𝛾 ∈ Γ

Γ
𝑉/Γ
𝑽
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Crystallographic Symmetry!

In Euclidean space … 

Crystallographic
Symmetry

is this group 
compatible with a lattice?

Kaleidoscopic
Symmetry

does this group define a 
good tiling / discretisation?

doesn’t make 
sense in 

spherical space!

still makes sense 
in 

spherical space!
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Motivation • Hyperbolic Space
Why study Lorentzian reflection symmetries?
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Motivation • Hyperbolic Space

x

Why study Lorentzian reflection symmetries?
This has already been done! (Partially) 

Can embed Hyperbolic space       in Minkowski space

i.e. upper sheet
lower sheet

Choose upper sheet i.e.  

y

t

ℍ!
"

ℍ#
"

upper light cone

ℍ$ ℝ%&,($

ℍ$ = ℍ(
$
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Motivation • Hyperbolic Space

Hyperplanes in              normal to spacelike roots 
will intersect

Reflections in               induce reflections
in       

ℝ%&,($
ℍ$

t

x
y

root
normal

hyperplane

ℝ%&,($
ℍ$
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Motivation • Hyperbolic Space

Hyperplanes in              normal to timelike roots 
will not intersect       

ℝ%&,($
ℍ$

t

x

y

root

normal
hyperplane



Minkowski! • Examples

Let’s consider both spacelike and timelike reflections in

e.g. Integer Square Lattice in 1+1 Minkowksi

Only roots are t = 1, x = 0
t = 0, x = 1

Fundamental Domain is a 1x1 Square

ℝ%&,($
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Minkowski! • Examples

Let’s consider both spacelike and timelike reflections in

e.g. Integer Cubic Lattice in 2+1 Minkowksi

Roots are integer points with norm +1, +2, –1, –2

Point group is infinite i.e. infinitely many mirrors 
through origin!

ℝ%&,($
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Preliminary Result • Too Many Mirrors!

Result For a collection of roots corresponding to mirrors through the origin in a 
Lorentzian space, a point group generated by reflections about these roots is 
infinite, unless either

(i) The induced metric in the space spanned by the roots is semi-definite.

(ii) The induced metric in the space spanned by the roots is indefinite, but 
for each pair of roots that span an indefinite space, such roots are 
orthogonal.

Basic Intuition = Hyperbolic “angles” are not bounded.
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Kaleidoscopic Symmetry?

In indefinite spaces … 

… and …

too many mirrors (unless group is semidefinite or reducible)

How can we have Kaleidoscopic Symmetry in indefinite spaces? 

Crystallographic
Symmetry

Kaleidoscopic
Symmetry
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Future Work

What can be concluded from the above preliminary results?

Most likely …

Everything is “boring” = Kaleidoscopic reflection groups in Lorentzian space 
must be reducible to orthogonal definite Euclidean
kaleidoscopic groups. 
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Thank You!

Big thanks to Latham for introducing me to these things and for the exciting math!

To Prof Henry Cohn for discussions.

To PSI Program and PSI friends for an unforgettable Master’s program!
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more
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Crystallographic Symmetry!

Important concepts underlying above discussion.

A group     is crystallographic if it stabilizes some lattice    , i.e.               for all  

Theorem Angles between reflecting hyperplanes in a crystallographic group can 
only be )*, )+, ),, )-. 

Fun Fact: This is also the condition that guarantees elements in the Cartan Matrix 
for a finite semisimple Lie Group are integers!

Γ Λ 𝛾Λ = Λ
𝛾 ∈ Γ
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Euclidean • Preliminary
Question: What polygons tile the plane (2D Euclidean space)?

e.g. can a hexagon tile the plane? 

yes! 
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Euclidean • Preliminary
Question: What polygons tile the plane (2D Euclidean space)?

e.g. can a pentagon tile the plane? 

no! 

A B
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Fundamental Domains

Understanding fundamental domains             Classification of irreducible finite 
Coxeter groups  

Fundamental Domain Volume in space      bounded by mirror hyperplanes 
that is minimal (not further divided by operations in     ) 

Minimality of Require for each distinct root of
Fundamental Domain mirrors bounding fundamental domain

Irreducible Mirrors defining the fundamental domain cannot be split 
into two disjoint sets that are mutually orthogonal.

𝑉
Γ
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Fundamental Domains

Understanding fundamental domains             Classification of irreducible finite 
Coxeter groups  

Minimality condition + Irreducibility Condition 
no more than            mirrors in      dimension Euclidean Space     

Count number of mirrors:

𝑛 + 1 𝑛

Less than      mirrors mirrors mirrors
Unbounded 

Fundamental Domain
Spherical “Triangle”! Euclidean “Triangle”!

𝑛 𝑛 𝑛 + 1
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Preliminary Result • Fundamental Domains

Result For a fundamental domain in an indefinite space bounded by mirror 
hyperplanes to not be further subdivided upon reflection, need 

(i) All spacelike and timelike roots of mirrors are orthogonal

(ii) For spacelike roots, 

(iii) For timelike roots, 
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Preliminary Result • Fundamental Domains

Recall Minimality condition                        + Irreducibility Condition 
no more than            mirrors in      dimension Euclidean Space  

This is no longer true in indefinite spaces!

Result Minimality condition                      for spacelike roots + Irreducibility Condition
arbitrarily many roots/mirror satisfy this if roots span indefinite subspace.

Result Minimality condition                      for timelike roots + Irreducibility Condition
arbitrarily many roots/mirror satisfy this if roots span indefinite subspace.

𝑛 + 1 𝑛
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Future Work

What can be concluded from the above preliminary results?

Either …

Everything is “boring” = Kaleidoscopic reflection groups in Lorentzian space 
must be reducible to orthogonal definite Euclidean 
kaleidoscopic groups. 

… or …

Things are weird = Things are weird when you allow roots to 
span indefinite spaces 42


